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Abstract
An exact single-level resonance formula for the survival probability S(t) in
the full time interval, that depends only on the resonance energy εr and the
decay width �r and fulfils time-reversal invariance, is used to discuss the non-
exponential contributions to decay. At short times the formula behaves as
S(t) ≈ 1 − ct1/2 with c a constant, whereas at long times it behaves as S(t) ≈
dt−3, d being a constant. With the time expressed in lifetime units, the onset of
non-exponential decay is given at short times by τS ≈ 4/[π(R2 +R + 1/4)] and
at long times by τL ≈ 5.41 ln(R) + 12.25, where R = εr/�r . The predictions
of the formula are compared with numerical examples and some experimental
results searching for non-exponential contributions to decay.

PACS numbers: 03.65.-w, 03.65.Ca

1. Introduction

The exponential decay law has been very successful in the description of the time evolution
of decay in quantum systems as follows from work originated in the early days of quantum
mechanics [1, 2]. The pioneering work of Khalfin [3], however, and subsequent theoretical
work have pointed to an approximate validity of the exponential decay law. Since the energy
spectrum is bounded from below, deviations from purely exponential decay are expected at
very short and very long times compared with the lifetime of the system. The experimental
verification of non-exponential decay has remained elusive for many decades. After years of
intense effort [4, 5] the first detected deviation from the exponential decay law was reported
recently in the short time regime in a tunnelling experiment involving an artificial system [6].
On the other hand, in the long time regime no observation of a deviation of the exponential
decay law has been reported so far.

The description of the non-exponential contribution to decay seems to depart from the
simplicity of the purely exponential decay law [1], where two quantities seem to suffice to
describe it: εr , that represents the energy of the decaying fragment, and the width �r , that
represents the decay rate and provides an estimate of the lifetime tl of the system through the
well known relationship tl = h̄/�r . It is the purpose of this paper to derive an expression for
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the survival probability of a single resonance that is valid in the full time interval and hence
includes the non-exponential contributions to decay. As in the case of purely exponential
decay we also assume that the initial state decays solely through the single resonance. We
model the single-level resonance by a pole structure, consisting of a pair of complex poles
on the momentum k-plane, that guarantees that the survival probability fulfils time-reversal
invariance.

This paper is organized as follows. In section 2 we derive the survival amplitude for
a single resonance as well as expressions for its short- and long time behaviour. Section 3
deals with an analysis of the survival probability. In particular we obtain expressions for the
onset to non-exponential decay in the short- and long time regimes and provide numerical
examples of these regimes. In section 4 we make a comparison with a numerical result for
the delta-shell potential, characterized by many resonance terms [7, 8], obtaining an excellent
agreement. We also apply the single-level formula to nuclear systems employed in the search of
non-exponential contributions [4, 5], showing the impossibility of observing non-exponential
decay in the time intervals considered in such experiments. Finally section 5 presents some
concluding remarks.

2. Single-level resonance decay formula

The survival amplitude is defined as

A(t) =
∫ ∞

0
ψ∗(r, 0)ψ(r, t) dr. (1)

The above expression gives the probability amplitude that at time t the decaying system remains
in the initial state ψ(r, 0). The survival probability is therefore given by

S(t) = |A(t)|2. (2)

Here for the sake of simplicity we refer to zero angular momentum. It is convenient to write
equation (1) in terms of the retarded time-dependent Green function g(r, r ′; t) as

A(t) =
∫ ∞

0
dr

∫ ∞

0
dr ′ ψ(r, 0)∗g(r, r ′; t)ψ(r ′, 0). (3)

Furthermore one may write g(r, r ′; t) in terms of the outgoing Green function G+(r, r ′; k),
through the Laplace transform,

g(r, r ′; t) = i

2π

∫
c

G+(r, r ′; k)e−ik2t2k dk (4)

where c represents an integration contour along the first quadrant of the complex k-plane and
our units are h̄ = 2m = 1. Using equation (4) in (3) one may write the survival amplitude in
the form

A(t) = i

2π

∫
c

A(k)e−ik2t dk (5)

where A(k) is given by

A(k) = 2k
∫ ∞

0
dr

∫ ∞

0
dr ′ ψ(r, 0)G+(r, r ′; k)ψ(r ′, 0). (6)

The connection between decay and the complex poles of the propagator goes back to Peierls [9].
It is well known from considerations on causality that the poles of the propagator are seated on
the lower half of the complex k-plane and that time-reversal invariance requires that complex
poles come in pairs. For each pole at kr = αr − iβr with αr , βr > 0 there is another pole k−r ,
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situated symmetrically with respect to the imaginary axis, that is, k−r = −k∗
r . Hence a correct

description of a resonance must involve both kr and −k∗
r . Similarly if ρr represents the residue

at a complex pole of the propagator then ρ−r = ρ∗
r .

In our model we assume that the single-level resonance is described entirely by a pair of
complex poles kr and −k∗

r . Assuming that A(k) → 0 as |k| → ∞ along all directions on the
complex k-plane allows us to write A(k) for a single resonance as

A(k) = Dr

k − kr
+

D∗
r

k + k∗
r

(7)

whereDr is the residue at the pole kr and involves a factor 2kr multiplied by a double integration
over space of the residue of the propagator and the initial state. Since there are no singularities
on the upper half of the k-plane one may modify the contour c in equation (5) into a straight
line going from −∞ to ∞ and then by substitution in that expression of equation (7) one may
write3

A(t) = DrM(kr, t) + D∗
r M(−k∗

r , t) (8)

where the M-functions above follow from the definition [8],

M(q, t) ≡ i

2π

∫ ∞

−∞

e−ik2t

k − kn
dk = 1

2
ey

2
erfc(y) (9)

with y = − exp(−iπ/4)qt1/2 and q = kr or −k∗
r . Using the previous expression for

the argument y one can easily verify that A(t), given by equation (8), fulfils time-reversal
invariance, namely,

A(t) = A∗(−t). (10)

The properties and evaluation of the M-functions follow by noting that M(y) = w(iy)/2.
In general w(z) = exp(−z2) erfc(−iz) [10]. In particular M(0) = 1/2. The M-
function satisfies the symmetry relation M(y) = ey

2 − M(−y), provided its argument fulfils
π/2 < arg (y) < 3π/2 [10]. Hence,

M(kr, t) = e−ik2
r t − M(−kr , t). (11)

Using the above expression in equation (8) gives

A(t) = Dre
−ik2

r t − [DrM(−kr , t) − D∗
r M(−k∗

r , t)]. (12)

The above expression exhibits explicitly the exponential and non-exponential contributions
to decay of the survival amplitude. One sees that purely exponential decay is obtained by
taking Dr = 1 and by neglecting the term within the square brackets on the right-hand side of
equation (12). Clearly this last term is the one responsible for the non-exponential contributions
to decay at both short and long times.

The coefficient Dr appearing in equations (7), (8) and (12) may be obtained from two
general conditions. The first condition follows from equation (6) by noting that A(k = 0) = 0.
This holds provided the propagator either vanishes or goes to a constant at k = 0. Otherwise the
propagator would diverge to infinity, a physically unsatisfactory and pathological behaviour.
Hence from equation (7) we obtain

Dr

kr
− D∗

r

k∗
r

= 0. (13)

3 In previous work, Garcı́a-Calderón [7] obtained equation (8) from a general expression of the survival amplitude,
for finite-range interactions, that involves an infinite expansion in terms of resonant states and S-matrix complex poles,
under the assumption that the initial state has a vanishing overlap with all resonant states except one. Equation (8)
has also been obtained in the framework of a schematic theory of nuclear reactions by Moshinsky [11] and in a model
for separable interactions in momentum space by Muga et al [12]. However, neither of the last two works analyses
the single-level resonance decay formula in the full time interval.



4158 G Garcı́a-Calderón et al

The second condition follows from the initial condition A(t = 0) = 1, and implies from
equations (8) or (12) that

1
2 (Dr + D∗

r ) = 1. (14)

It then follows immediately from equations (13) and (14) that Dr is given by

Dr = 1 − i
βr

αr

(15)

that depends only on the real and imaginary values of the complex pole kr = αr − iβr .

2.1. Short times

The short time behaviour of the single resonance survival amplitude may be readily obtained
by expanding the M-functions in equation (7) according to the formula [10], M(q, t) =∑∞

s (−y)s/[2�(s/2 + 1)] with y as defined above. It then follows that the leading term in t

reads [7]

A(t) ≈ 1 −
(

i

π

)1/2
�r

αr

t1/2 (16)

where Er = εr − i�r/2 = k2
r . Hence the corresponding survival probability is given by

S(t) ≈ 1 −
(

2

π

)1/2
�r

αr

t1/2. (17)

The above t1/2 behaviour at short times contrasts with the short time t2-dependence of the
survival probability commonly considered. This has been examined and clarified by Muga
et al [12]. The essential point is that a t2-dependence requires that the first and second energy
moments in the expansion of exp(−iHt), with H the complete Hamiltonian, exist. On the
other hand, if the mean energy of the initial state is infinite, a t1/2 dependence is feasible.
The physical realizability of states with infinite first or second moments is a controversial
subject [13]. In our approach the initial state is not specified. However we can convince
ourselves that the first and second moments are infinite by noting that A(t) may be written
as [12]

A(t) = 〈ψ | exp(−iHt)|ψ〉 = 1 − it

h̄
〈ψ |H |ψ〉 − t2

2h̄2 〈ψ |H 2|ψ〉 + · · · . (18)

Using the above equation one may write the first and second moments, 〈ψ |H |ψ〉 and
〈ψ |H 2|ψ〉, in terms of the time derivatives of the survival amplitude A(t) as

〈ψ |H |ψ〉 = − h̄

i

[
dA (t)

dt

]
t=0

(19)

and

〈ψ |H 2|ψ〉 = −h̄2

[
d 2A(t)

dt2

]
t=0

. (20)

From equation (16) it follows that at short times dA/dt ∼ t−1/2 and d 2A/dt2 ∼ t−3/2. Hence
using these expressions, as appropriate, on the right-hand side of equations (19) and (20) yields
an infinite value for both the first and second moments.
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2.2. Long times

To analyse the long time behaviour of the single-resonance survival amplitude it is more
appropriate to consider equation (12) since it explicitly exhibits the exponential decay
contribution. At very long times, once the exponentially decaying contribution becomes
negligible, the behaviour of the survival amplitude follows from the asymptotic expansion
of the M functions [10], M(q, t) ∼ 1/(qt1/2) + 1/(q3t3/2) + · · · (q = kr or −k∗

r ). It turns out
that the coefficient of the leading term in inverse powers of time for A(t), that goes as t−1/2,
is precisely that given by equation (13) and hence vanishes exactly. Consequently,

A(t) ≈ e−iεr te−�r t/2 +
i

4(π i)1/2

�r

αr(ε2
r + �2

r )

1

t3/2
. (21)

If εr � �r one may neglect �2 in the denominator of equation (21) to obtain the expression
for the asymptotic long time non-exponential contribution to decay derived by Goldberger
and Watson [14]. One may write the time in lifetime units, τ = �rt , to obtain the survival
amplitude in terms of the parameter R = εr/�r , namely,

A(t) ≈ e−i(R−i/2)τ + F(R)
1

τ 3/2
(22)

with F(R) = {2(iπ)1/2[2R + (4R2 + 1)1/2]1/2(R2 + 1)}−1. For very large values of R we
have F(R) ≈ [4(iπ)1/2R5/2]−1 and hence the survival probability S(τ) becomes the simple
expression

S(τ) ≈ e−τ +

(
1

16πR5

)
τ−3. (23)

It might be of interest to mention that the long time behaviour of A(t) as t−3/2 in fact
follows from a general argument that involves the steepest-descent method to asymptotically
evaluate equation (5), that holds even if the explicit form of A(k) is not known [7, 8]. This
involves the deformation of the contour c in the above equation to a line 45◦ off the real k-axis
and the Taylor expansion of A(k) around the saddle point k = 0 of the exponential term in
the integrand of equation (5). Hence, around k = 0, A(k) ≈ A(0) + kA′(0) + k2A′′(0) + · · · ,
where A′(0) and A′′(0) denote, respectively, the first and second derivatives with respect to
k evaluated at k = 0. The first and second terms in the above Taylor expansion yield a
vanishing contribution to the asymptotic value of A(t) because A(0) = 0 and kA′(0) makes
the integrand an odd function of k. It is then straightforward to see that the term k2A′′(0) yields
the t−3/2 asymptotic behaviour of A(t). Using equation (7) to evaluate A′′(0) reproduces the
corresponding coefficient in equation (21).

We end this section by emphasizing the relevance of the pole −k∗
r seated on the third

quadrant of the complex k-plane. It plays a crucial role in fulfilling time-reversal invariance
and in the derivation of the short- and long time expressions for the survival probability. We
also emphasize that some relevant previous results to long time non-exponential contributions
to decay were derived in the limit R � 1, whereas our approach holds for any value of R in
the full time interval.

3. Analysis of the survival probability

The expression for A(t) given by equation (12) depends only on the resonance parameters αr

and βr . As mentioned above if we work with lifetime units (τ = �rt) the relevant input is the
ratio of the resonance energy εr to the resonance width �r , namely, R = εr/�r .
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Figure 1. Plot of ln S(τ) against τ , with S(τ) the survival probability (calculated using
equation (12)) and τ the number of lifetimes, in the short time regime for several values of
R = εr/�r . The dashed line that represents purely exponential decay is to guide the eye (see
text).

In order to exhibit the very short time behaviour of the survival probabilityS(τ) = |A(τ)|2,
in figure 1 we plot ln S(τ) against τ for different values of R. At early times all curves
behave according to equation (17). The straight line corresponds to purely exponential decay
and is to guide the eye. One may estimate the timescale when the short time behaviour of
the survival probability for a single resonance becomes comparable to purely exponential
decay, given by Sed = |Dr |2 exp(−�rt). Using equation (17) this of course occurs when
1 − (2/π)1/2(�r/αr)t

1/2 ≈ |Dr |2 exp(−�rt). Provided αr > βr , one may write the resulting
timescale in terms of the parameters τ and R (with R � 1) as the simple expression

τS ≈
(

4

π

)
1

R2 + R + 1/4
. (24)

In order to exemplify the long time behaviour of the survival probability, figure 2 exhibits a
plot of ln S(τ) against τ . One sees that all curves have a similar structure. The values next to
each curve represent the corresponding values of R. One may distinguish three regions: first,
there is an interval along which the decay is purely exponential (the short-time region is so
small that it cannot be perceived), then an oscillatory region appears. This region represents a
transient regime where the transition from exponential to non-exponential decay occurs. Note
that it may involve several lifetimes. Thereafter, in the third region, the inverse power law τ−3

dominates the decay. Note also that asR increases, the deviation from exponential decay to non-
exponential decay occurs at a larger number of lifetimes. A simple expression for the onset from
exponential to non-exponential decay may be obtained by noting that the survival amplitude
S(t) may be expressed as the sum of three quantities describing, respectively, the above three
regions. Equation (12) may be rewritten as A = Aed + Aned with Aed = Dr exp(−ik2

r t)

and Aned = [DM(−kr , t) + D∗
r M(−k∗

r , t)]. Clearly, the survival probability for the single
resonance is given by

S(t) = Sed(t) + Sned(t) + Sint(t) (25)

where Sed = |Aed|2, Sned = |Aned|2, and Sint = 2Re [A∗
edAned]. The exponential decay occurs

when the term Sed is the dominant contribution to S. The non-exponential nature of the decay
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Figure 2. Plot of ln S against τ , with S(τ) the survival probability (calculated from equation (12)),
τ the number of lifetimes, in the long time regime for several values of R = εr/�r . The straight
line refers to exponential decay. The arrows indicate the values τL where Sed and Sned cross each
other (see text).

Figure 3. Plot of τL, given by equation (26), against R = εr/�r (continuous curve). The full
circles correspond to the values of τL indicated by the arrows in figure 2. The inset exhibits a
similar calculation for smaller values of R (see text).

arises from the Sned term, which at very long times follows the well known t−3 behaviour. The
interference contribution Sint is an oscillatory function of time. When Sed becomes comparable
to Sned the transition from exponential to non-exponential decay occurs as described above.
From these considerations we may establish a criterion for the onset of non-exponential decay
as the value of the time, τL, when Sed and Sned cross each other. For the cases considered in
figure 1, the values of τL obtained with this criterion are plotted against R in figure 3 (full
circles). The distribution of these points suggests a logarithmic R-dependence of the type

τL = A ln(R) + B. (26)
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The values of the constantsA = 5.41 andB = 12.25 are obtained from a fitting procedure.
A plot of τL against R using the above formula is shown by the solid curve in figure 3. It can
be noted that an excellent description is obtained in the broad interval considered. The inset
shows an analogous calculation for smaller values of R. Equation (26) provides a more precise
estimate for the long time non-exponential contribution to decay than the rough estimate given
by Winter [16], τL = K ln(R), with K a numerical factor, in the range from two to ten, that
depends on the shape of the low-energy end of the spectrum. The problem of analytically
finding the explicit dependence of τL with respect to R may be a difficult task, except for the
asymptotic case, which enables us to use the simple expression given by equation (23). From
that one can derive an expression for τL,

τL − 3 ln(τ0) = 5 ln(R) + ln(16π). (27)

It is not difficult to convince oneself that for large values of R the two formulae give essentially
the same numerical results. For example for R = 1.0 × 1020 equation (26) gives τL = 261.39
whereas equation (27) yields τL = 250.75. The discrepancy is less than 0.5%.

We end this section by emphasizing that the analysis for the survival probability for the
single-level resonance formula provides three relevant timescales: the lifetime tl , the short
timescale τS, given by equation (24), and the long timescale τL, given by equation (26). It
might be of interest to compare our results with the general analysis of non-exponential decay
made by Greenland [15]. He establishes a memory timescale that has no counterpart in our
approach, since we do not consider any interaction that couples the decaying state to the
continuum. In addition to the lifetime timescale he also identifies a long timescale, going
as ln(R), that essentially coincides with ours in the limit R � 1. However for short times
Greenland has τG

S ∼ 1/R, different from our result given by equation (24). Note however
that for R ∼ 1, τS ≈ τG

S /2. In general the difference between these timescales originates
in the different early-time behaviours of the survival probability: in our case we obtain a
t1/2-dependence whereas Greenland assumes a t2-dependence.

4. Comparison and applications

Let us compare the predictions of our approach with a numerical example involving a finite-
range potential. The survival amplitude for this problem has been solved exactly and may be
expressed as a sum of products of M-functions and expansion coefficients (that consist of the
overlap of the arbitrary initial state with the resonant states of the system) [7, 8], namely,

A(t) =
∞∑
r=1

[DrM(kr, t) + D∗
r M(−k∗

r , t)] (28)

where the expansion coefficients Dr = CrCr with Cr = ∫ R

0 ψ(r, 0)u(r) dr and Cr =∫ R

0 ψ∗(r, 0)ur(r) dr , with the set of functions ur(r), correspond to the resonant states of the
system [7, 8]. These coefficients have some useful properties; in particular they fulfil the sum
rules:

∞∑
r

(
Dr

kr
− D∗

r

k∗
r

)
= 0 (29)

and

1
2

∞∑
r

(Dr + D∗
r ) = 1. (30)
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Figure 4. Plot of ln S(τ) against τ , with S(τ) the survival probability and τ the number of lifetimes,
for the value R = 3257.33 that corresponds to the first resonance pole in the delta-shell potential.
The value τ = 56 obtained using equation (26) is indicated by the arrow (see the text).

As mentioned previously equations (28)–(30) become equations (8), (13) and (14) provided it
is assumed that the overlap of the initial state ψ(r, 0) with all states un(r) vanishes except for
one of them, say the rth [7].

Our example corresponds to the delta-shell potential V (r) = λδ(r − a), considered in
detail in [7, 8]. We refer the reader to the calculation for the time evolution of the survival
probability displayed in figure 1 of [8]. It is worth emphasizing that the initial state there,
ψ(r, 0) = 21/2 sin(π/R)r , is close to the resonant pole with the longest lifetime, namely
k1 = 3.126 − i0.000 24. The parameters of the potential are λ = 200 and a = 1 (the units
are h̄ = 2m = 1). The above value of k1, that leads to R = 3257.33, can be put into our
expression for the single-level survival amplitude given by equations (8) or (12) to allow us to
calculate the survival probability as a function of the number of lifetimes τ . This is displayed
in figure 4. The deviation for non-exponential decay occurs for τ = 56, indistinguishable from
the result for the full calculation involving many resonance terms displayed in figure 1 of [8].
Note that the one-term approximation to equation (28), in view of equations (29) and (30),
does not lead to the t−3/2 behaviour for the survival amplitude, even if ReD1 is close to unity.

Let us now apply the single-level formula to some real systems. As mentioned previously
so far the only experimental evidence for the deviation of the exponential decay law has
been reported in the short time regime [6] for a system consisting of ultra-cold sodium atoms
trapped in an accelerating optical potential created by two counter-propagating lasers. The
resulting potential is analogous to that for electrons moving in a periodic lattice with a dc
electric field and hence it exhibits a band structure. It follows from the above considerations
that the decay process cannot be ascribed to a single resonance. Indeed, the decay process
has been visualized as Landau–Zener tunnelling between Bloch bands, providing a reasonable
agreement with experiment [17]. Another experiment in the short time regime is the search for
nuclear radioactive decay made by Norman et al. They studied theβ decay of 60Co to search for
deviations of the exponential decay law up to times as small as 10−4 t1/2 with negative results.
In this case the resonance parameters are εr = 0.3193 MeV and �r = 2.744 × 10−30 MeV, so
R = 1.16 × 1029. Equation (24) predicts non-exponential decay at τS ∼ 10−58 of a lifetime.
This is an extremely small quantity, much smaller than the tested fraction of a lifetime. A similar
result is obtained for an improved test using 40K [5] where the validity of the exponential decay
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law was extended up to 10−10 t1/2. Here R = 1.38 × 1038 and hence in this case τS ∼ 10−76

of a lifetime, much smaller than the previous example.
Regarding the search on non-exponential contributions to decay at long times we also refer

to the work by Norman et al [4]. These authors studied the decay law of 56Mn in the interval
0.3 < τ < 45 and detected no deviation from the exponential decay law. For the radioactive
decay of 56Mn, with εr = 2.81 MeV and �r = 7.09×10−26 MeV, associated with the lifetime
2.576 hr/ln2, gives R = 3.96 × 1025 and hence, using equation (26), the number of lifetimes
where the deviation from the exponential decay law would occur is around τL = 331. This
is larger than the estimate of τL ≈ 200 given by Winter [16], though it lies within the limits
given by his formula, as discussed in the previous section. Certainly our prediction is far from
the time interval considered in the experiment by Norman and co-workers. The results of
figure 2 suggest that values of R of the order of unity may be more adequate to observe non-
exponential decay. An appealing example is the decay of the first unbound state of 5He [18].
There R ∼ 1 and from equation (26) one would expect the onset of non-exponential decay
to occur for τL ∼ 12. However the lifetime of the state is extremely short, tl ≈ 10−22 s, and
hence a measurement of non-exponential decay would require us to measure times of the order
of 10−21 s, that are beyond present-day technologies. This example suggests that in addition
to R ∼ 1 it is also required that the lifetime tl of the system be a measurable timescale.

5. Concluding remarks

We have considered an exact single-level resonance formula for the survival amplitude
(equation (12)) and consequently of the survival probability, to describe the transition from
exponential to non-exponential decay for both the short time and the long time regimes, given
respectively by the timescales τS (equation (24)) and τL (equation (26)). The only inputs
required in these expressions are the ratio R = εr/�r and the number or fraction of lifetimes τ
involved. The single-level resonance formula could be useful for determining appropriate
resonance parameters in the search for evidence of non-exponential decay in quantum systems.
Cases where R ∼ 1 seem to be of particular interest. There τS ∼ 1/2 and τL ∼ 12. In
order to detect the non-exponential contribution, and in addition to have initially a sufficient
number of decaying systems, the lifetime of the system must be measurable with present-day
technologies. It has been recognized that Nature does not seem to favour the occurrence of the
correct combination of circumstances to exhibit the non-exponential contributions to decay.
This suggests resorting to artificial quantum structures, where one may design and control
the relevant parameters of the system, to seek verification of this old prediction of quantum
mechanics.
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